0=-16x^2+9.7x+24.61

Simple and best practice solution for 0=-16x^2+9.7x+24.61 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+9.7x+24.61 equation:


Simplifying
0 = -16x2 + 9.7x + 24.61

Reorder the terms:
0 = 24.61 + 9.7x + -16x2

Solving
0 = 24.61 + 9.7x + -16x2

Solving for variable 'x'.

Combine like terms: 0 + -24.61 = -24.61
-24.61 + -9.7x + 16x2 = 24.61 + 9.7x + -16x2 + -24.61 + -9.7x + 16x2

Reorder the terms:
-24.61 + -9.7x + 16x2 = 24.61 + -24.61 + 9.7x + -9.7x + -16x2 + 16x2

Combine like terms: 24.61 + -24.61 = 0.00
-24.61 + -9.7x + 16x2 = 0.00 + 9.7x + -9.7x + -16x2 + 16x2
-24.61 + -9.7x + 16x2 = 9.7x + -9.7x + -16x2 + 16x2

Combine like terms: 9.7x + -9.7x = 0.0
-24.61 + -9.7x + 16x2 = 0.0 + -16x2 + 16x2
-24.61 + -9.7x + 16x2 = -16x2 + 16x2

Combine like terms: -16x2 + 16x2 = 0
-24.61 + -9.7x + 16x2 = 0

Begin completing the square.  Divide all terms by
16 the coefficient of the squared term: 

Divide each side by '16'.
-1.538125 + -0.60625x + x2 = 0

Move the constant term to the right:

Add '1.538125' to each side of the equation.
-1.538125 + -0.60625x + 1.538125 + x2 = 0 + 1.538125

Reorder the terms:
-1.538125 + 1.538125 + -0.60625x + x2 = 0 + 1.538125

Combine like terms: -1.538125 + 1.538125 = 0.000000
0.000000 + -0.60625x + x2 = 0 + 1.538125
-0.60625x + x2 = 0 + 1.538125

Combine like terms: 0 + 1.538125 = 1.538125
-0.60625x + x2 = 1.538125

The x term is -0.60625x.  Take half its coefficient (-0.303125).
Square it (0.09188476563) and add it to both sides.

Add '0.09188476563' to each side of the equation.
-0.60625x + 0.09188476563 + x2 = 1.538125 + 0.09188476563

Reorder the terms:
0.09188476563 + -0.60625x + x2 = 1.538125 + 0.09188476563

Combine like terms: 1.538125 + 0.09188476563 = 1.63000976563
0.09188476563 + -0.60625x + x2 = 1.63000976563

Factor a perfect square on the left side:
(x + -0.303125)(x + -0.303125) = 1.63000976563

Calculate the square root of the right side: 1.276718358

Break this problem into two subproblems by setting 
(x + -0.303125) equal to 1.276718358 and -1.276718358.

Subproblem 1

x + -0.303125 = 1.276718358 Simplifying x + -0.303125 = 1.276718358 Reorder the terms: -0.303125 + x = 1.276718358 Solving -0.303125 + x = 1.276718358 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.303125' to each side of the equation. -0.303125 + 0.303125 + x = 1.276718358 + 0.303125 Combine like terms: -0.303125 + 0.303125 = 0.000000 0.000000 + x = 1.276718358 + 0.303125 x = 1.276718358 + 0.303125 Combine like terms: 1.276718358 + 0.303125 = 1.579843358 x = 1.579843358 Simplifying x = 1.579843358

Subproblem 2

x + -0.303125 = -1.276718358 Simplifying x + -0.303125 = -1.276718358 Reorder the terms: -0.303125 + x = -1.276718358 Solving -0.303125 + x = -1.276718358 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.303125' to each side of the equation. -0.303125 + 0.303125 + x = -1.276718358 + 0.303125 Combine like terms: -0.303125 + 0.303125 = 0.000000 0.000000 + x = -1.276718358 + 0.303125 x = -1.276718358 + 0.303125 Combine like terms: -1.276718358 + 0.303125 = -0.973593358 x = -0.973593358 Simplifying x = -0.973593358

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.579843358, -0.973593358}

See similar equations:

| 4k+7(-4-4k)=-2(k-2) | | p=3-3 | | 47=-2+7c | | 20-15=a | | 5(6x-4)=-200 | | 3(7x+6)=165 | | 5-3x=8x^2+15x | | 4(-3+x)=32 | | 2t=-3 | | 35=3-8w | | 0=60t-16t^2 | | 4x+9=0+5x | | 2x^2-3x=36 | | 7(5x+3)=-259 | | -2(-6+x)=-4 | | 4=x-5 | | x+2.5=96.25 | | 125-2x=16x-21 | | -1=x-8 | | 15-2y=25 | | 105-2x=5x+7 | | x(14+x)=255 | | x+2y=50 | | X^4-10X^3+24X^2+5X+2=0 | | x^2+14x-255=0 | | 2x^2=225 | | 10-5x=2(3-2x) | | 3n+2=15 | | 2x+2y=4ordemay | | 5a+11=3a+-2 | | 5.1x=1.2 | | -2x^2-4=-8x |

Equations solver categories